(资料图)

1、蝴蝶定理蝴蝶定理 蝴蝶定理最先是作为一个征求证明的问题,刊载于1815年的一份通俗杂志《男士日记》上.由于其几何图形形象奇特、貌似蝴蝶,便以此命名,定理内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点. 出现过许多优美奇特的解法,其中最早的,应首推霍纳在职815年所给出的证法.至于初等数学的证法,在国外资料中,一般都认为是由一位中学教师斯特温首先提出的,它给予出的是面积证法,其中应用了面积公式:S=1/2 BCSINA.1985年,在河南省《数学教师》创刊号上,杜锡录同志以《平面几何中的名题及其妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地到处传开. 这里介绍一种较为简便的初等数学证法. 证明:过圆心O作AD与B牟垂线,垂足为S、T,连接OX,OY,OM.***.MT. ∵△SMD∽△CMB,且SD=1/2ADBT=1/2BC, ∴DS/BT=DM/BM又∵∠D=∠B ∴△MSD∽△MTB,∠MSD=∠MTB ∴∠MSX=∠MTY;又∵O,S,X,M与O,T.Y.M均是四点共圆, ∴∠XOM=∠YOM ∵OM⊥PQ∴XM=YM如图1,椭圆的长轴A1A2与x轴平行,短轴B1B2在y轴上,中心为M(o,r)(b>r>0).(Ⅰ)写出椭圆的方程,求椭圆的焦点坐标及离心率;(Ⅱ)直线y=kx交椭圆于两点C(x1,y1),D(x2,y2)(y2>0);直线y=k2x交椭圆于两点G(x3,y3),H(x4,y4)(y4>0).求证:k1x1x2/(x1+x2)=k2x3x4/(x3+x4)(Ⅲ)对于(Ⅱ)中的C,D,G,H,设CH交X轴于点P,GD交X轴于点Q.求证: | OP | = | OQ |.(证明过程不考虑CH或GD垂直于X轴的情形)2.北京教育考试院招生考试办公室专家在公布的《2003年全国普通高等学校招生统一考试试题答案汇编》中给出的参考解答如下:(18)本小题主要考查直线与椭圆的基本知识,考查分析问题和解决问题的能力.满分15分.(Ⅰ)椭圆方程为x2/a2+(y-r)2/b2=1焦点坐标为(Ⅱ)证明:将直线CD的方程y=kx代入椭圆方程,得b2x2+a2(k1x-r)2=a2b2,整理,得(b2+a2k12)x2-2k1a2rx+(a2r2-a2b2)=0。

本文到此分享完毕,希望对大家有所帮助。

推荐内容